Mar 28, 2024  
2018-2019 Undergraduate Catalog 
    
2018-2019 Undergraduate Catalog [Not Current Academic Year. Consult with Your Academic Advisor for Your Catalog Year]

About the College of Engineering


Colleges  > Cullen College of Engineering  > About the College of Engineering
 

Contact Information

Contact Information
Engineering Undergraduate Programs 713-743-4200
Department of Chemical and Biomolecular Engineering 713-743-4300
Department of Civil and Environmental Engineering 713-743-4250
Department of Electrical and Computer Engineering 713-743-4400
Department of Industrial Engineering 713-743-4180
Department of Mechanical Engineering 713-743-4500
Department of Petroleum Engineering 713-743-6103
Communications 713-743-4217
Composites Engineering Applications Center 713-743-5053
Continuing Education 713-743-4233
Cooperative Education 713-743-4230
Corporate Outreach and Development 713-743-4216
Engineering Career Center 713-743-4230
Houston InfoComm Technology Center 713-743-1279
Information Systems and Services 713-743-4241
PROMES Office 713-743-4222
Web site www.egr.uh.edu

Dean: Joseph W. Tedesco , Ph.D., Lehigh University

Director of the Division of Undergraduate Programs and Student Success: Frank J. “Fritz” Claydon, Ph.D., Duke University

Associate Dean: Suresh Khator, Ph.D., Purdue University

Director of Business Operations: Stephen Bangerter

Engineers devise creative applications of scientific principles for the betterment of society through technological development. They do this by discovering methods of transforming resources into useful products, systems, and services that are used in every facet of life: housing, transportation, space exploration, medicine, manufacturing and automation, and communications. The marvels of engineering are everywhere.

An engineer bridges the gap between basic scientific research and industrial applications, helping to bring innovative ideas into society to benefit everyone.

Objectives

The college faculty strives to prepare students for their role as productive members of society by providing a comprehensive education.

Students first master the scientific principles upon which engineering is based and then examine the industrial and social structure that regulates the application of science to community life. Most important, they experience engineering and its creative nature as part of the learning process.

Recipients of a Bachelor of Science in Engineering have many options: employment in industry or government; further education in fields such as engineering, law, medicine, business, sales, management, and more. Engineering is the only undergraduate program that introduces students to such diverse studies as mathematics, pure and applied sciences, engineering sciences, synthesis, systems design, social sciences, and humanities and fine arts.

A comprehensive education is required for engineers. Engineering challenges are more complex, require a greater sophistication of skills, and will affect people even more directly than in the past. Engineers must be able to marshall their skills to grapple with legal, environmental, humanistic, political, social, and economic concerns.

Major issues addressed by engineers include pollution and hazardous waste management, energy resources and enhanced oil recovery, transportation, housing, and product safety. High-tech areas such as superconductivity and space-related research will hold engineers’ attention for some time to come. In order to successfully solve the many challenges facing society, engineers must receive an education that informs, stimulates, and provides practical experience. The Cullen College of Engineering provides that education.

Honor Societies

The Cullen College of Engineering has six honor societies. They are described below:

Alpha Pi Mu
Industrial Engineering Honor Society. Initiates are required to be in the top one-fifth of their class as juniors and the top one-third as seniors.

Chi Epsilon
Civil Engineering Honor Society. Initiates are required to be at least of junior standing in civil engineering and to be in the upper one-third of their class.

Eta Kappa Nu
Electrical Engineering Honor Society. Initiates are required to have a 3.00 minimum grade point average and to be at least of junior standing in electrical engineering.

Omega Chi Epsilon
Chemical Engineering Honor Society. Initiates are required to have a 3.25 minimum grade point average as a junior and a 3.00 minimum grade point average as a senior.

Pi Tau Sigma
Mechanical Engineering Honor Society. Initiates are required to have a 3.25 minimum grade point average as a junior and a 3.00 minimum grade point average as a senior.

Tau Beta Pi
National Engineering Honor Society. Initiates must be in the top eighth of their class with junior ranking or the top fifth of their class with senior ranking. Initiates are required to have a 3.25 minimum grade point average as a junior and a 3.00 minimum grade point average as a senior. There are also certain class requirements that must be met depending upon the students specific major.

Student Organizations

Because student organizations play an important part in helping students to become responsible members of their profession and the university, all students are encouraged to become active members. The following organizations are open to engineering students in good standing:

American Institute of Chemical Engineers - Student Chapter

American Society of Civil Engineers - Student Chapter

Institute of Electrical and Electronics Engineers - Student Branch

Institute of Industrial Engineers - Student Chapter

American Society of Mechanical Engineers - Student Section

Society of Automotive Engineers - Student Chapter

Society of Women Engineers - Student Chapter

M.A.E.S. - Mexican American Engineering Society

N.S.B.E. - National Society of Black Engineers

S.H.P.E. - Society of Hispanic Professional Engineer

SPE - Society of Petroleum Engineers

AADE - American Association of Drilling Engineers

Scholarships

The college awards four-year scholarships based on academic performance in amounts ranging from $500 to $5,000 per year for beginning students. Currently enrolled and transfer students may also be eligible for college awards and for other scholarships through their major departments. Applications for engineering scholarships are available at https://www.egr.uh.edu/academics/scholarships or by calling 713-743-4200.

Accreditation

The undergraduate programs in biomedical, chemical, civil, computer, electrical, industrial, mechanical and petroleum engineering are accredited by the Engineering Accreditation Commission of ABET http://www.abet.org/.

For more detailed information on accreditation regarding the Cullen College of Engineering, please visit http://career.egr.uh.edu/.

Facilities

Engineering Educational Resource Center

The Engineering Educational Resource Center (EERC) is a technology support unit on campus for students, faculty, and staff. The EERC strives to anticipate and proactively meet the technology needs of the engineering community and provide superior customer service. The EERC:

  • assists faculty in the application of educational technologies to curriculum development and both face-2-face and
  • online course delivery
  • researches and designs processes and applications to meet specific needs and objectives
  • communicates and assists with IT and distance education grants and additional sources of funding
  • administers the Mediasite Lecture Capture system for the College
  • introduces new classroom technologies
  • serves as liaison for lecture-capture classroom technology upgrades
  • provides technology-related training to students, faculty and staff
  • converts instructors’ handwritten notes into electronic format for use in face-to-face and online course development
  • serves as liaison for IT and Blackboard support issues.

Engineering students have access to a number of computer laboratories on campus, and each provides a different level of service.

The Engineering Computing Center (ECC) includes 124 computers, a scanner, and printers. It is open 7 days a week with extended hours during peak periods.

The M.D. Anderson Library’s computer facilities include approximately 250 computers with free printing; it is open 7 days a week throughout the term and expands its hours to 24 hours a day during peak periods.

Central Site Computing, located in the Social Work Building has over 150 computers, scanners and printers and is open 24 hours a day, 7 days a week.

The Engineering Dedicated Teaching Lab, including the Engineering Educational Resource Center and Instructional Laboratory, has 28 computers. It is designed to be the primary lab for hands-on training for classroom instruction, provides special software applications for students and faculty, and can be used for just-in-time training for College staff. This lab is open to all Engineering students when not reserved for special training.

The Director of Education Technology, Instructional Designer, and graduate technology assistants have offices in the Educational Resource Center and are available to assist faculty and students with any technology needs, while they also conduct special software training classes, and serve as a resource to help students understand and utilize the various technologies available at the university.

Engineering Computing.

The goal of the Engineering Computing operation is to provide an excellent educational computing environment for undergraduate and graduate students in the College of Engineering, and for students in other colleges who are taking courses offered by departments that require computer resources. Access for graduate students is primarily for those who are not engaged in M.S. and Ph.D. thesis and dissertation research. Faculty advisors have the responsibility to obtain funding for research computing done by them and their students from research grant resources that are usually available for such support.

The Engineering Computing Center (ECC) is the College’s largest open lab with 124 computer workstations, a scanner, and secure printers. A variety of software applications are available to provide a quality undergraduate education.

The ECC is open 7 days a week (M-Th 8:00 am-11:00 p.m., Fri 8:00 a.m.-10:00 p.m., and Sat-Sun 12:00 noon-7:00 p.m.).

The Engineering Educational Resource Center and Instructional Lab has 28 computers and is designed to be an open lab when not reserved for direct instruction of students and faculty/staff training. The lab is open 5 days a week (M-Th 9:30 a.m.-5:30 p.m. and Fri 9:30 a.m.-4:00 p.m.).

Fields of Study

Biomedical Engineering

Biomedical engineering is the application of engineering and technology to the life sciences.

It involves the development of tools for studying new areas in biology or physiology, research into new methods for diagnosing disease, and helping improve therapies for treatment of disease.

The field of biomedical engineering encompasses traditional areas such as bioinstrumentation and biomechanics as well as exciting new areas such as tissue engineering and biosensors.

Students with a bachelor’s degree in biomedical engineering have a broad range of career paths. They can work for a biotechnology or medical device company or pursue graduate degrees in medicine, law, biomedical sciences, or biomedical engineering.

Only within the last several decades has biomedical engineering become recognized as a separate academic discipline and it continues to rapidly evolve and expand. Although based on fundamental principles in the natural sciences and mathematics, it integrates these with sound engineering precepts to tackle problems in biology and medicine. It seeks to employ the experimental and analytical methods of engineering to the study of living systems. This involves such issues as: development of biological materials and implants; study of processes for the prevention, diagnosis and treatment of disease; and development of new methods and techniques for patient rehabilitation and health monitoring.

The demand for biomedical engineers is expected to continue to grow rapidly over the next decade. This is due in part to the aging of the U.S. population and its increasing demand for better medical devices and systems for diagnosis and treatment of diseases. There is a strong need for more proactive health care. Increasingly sophisticated equipment and procedures will fuel an increased requirement for biomedical engineers.

Mission Statement

In addition to providing our students with a strong background in engineering, mathematics, and biological science, our Biomedical Engineering Program mission focuses on educating students to prepare them for opportunities in the areas of improved health care delivery and better home health care monitoring through noninvasive home health prognostics to anticipate and track major health pathologies.

The curriculum is designed to establish a fundamental understanding of the life and engineering sciences and enable the synthesis of these sciences though the introduction of new courses directed toward biosensing and bioanalytics, and thus to educate the next generation of engineers/scientists/physicians who could eventually help move health care monitoring to our homes and allow people to better manage their health.

The strong University of Houston academic departments in physics, chemistry, biology, mathematics, and computer sciences as well as in chemical, mechanical and electrical and computer engineering, and a faculty with significant biomedical engineering research activity provide an excellent supportive environment for our Biomedical Engineering Program.

This interdisciplinary curriculum will provide participating students with a basic understanding of the life sciences, a mastery of engineering logic, tools and approaches, the ability to make and interpret quantitative measurements in living systems, the ability to use modeling techniques, and the ability to help formulate and solve important biomedical problems, including the design of devices, systems and processes to improve human health and well-being. The curriculum includes a series of courses in biosensing which will educate students in health care monitoring and diagnostic methods emphasizing innovations at the engineering/life sciences interface, such as MicroElectroMechanical System (MEMS) devices. There will also be courses with a bioanalytical component to teach students the basics of detection and analysis of biomolecules.

The goals of the Biomedical Engineering undergraduate program are to educate students with the capabilities to:

  1. Acquire a fundamental knowledge of engineering and biology as applied to medical science and technology.
  2. Develop the ability to integrate the learning from this multi-disciplinary field into a coherent approach to solving problems in biomedical engineering.
  3. Develop an intellectual curiosity, which can drive their professional work and lead to creativity and innovation.
  4. Learn to appreciate the ethical, legal, professional and social responsibilities essential for work in medically related fields.
  5. Perfect oral and written communication skills and the ability to perform effectively in group projects.

Chemical Engineering

Chemical engineers investigate and develop techniques to convert basic raw materials into useful products. The field extends into many areas of manufacturing and refining, as well as resource
management and environmental concerns.

Chemical engineers investigate the processes used in the manufacture of products and materials and are interested in the concerns of manufacturing processes: pollution control and hazardous waste management.

Chemical engineers address large-scale problems. While the chemist investigates the interaction of chemicals in the formation of a new product in a laboratory environment, the chemical engineer develops the processes and procedures needed to produce marketable quantities of the new product. While the physicist analyzes the makeup and properties of a superconducting material, the chemical engineer plans the facility that will manufacture the material in the volume and configurations needed. Many career opportunities await chemical engineering graduates including those involving computer systems and process control, environmental control, biochemical agents, electronic materials, superconducting materials, pharmaceuticals, petroleum engineering, petrochemicals, and synthetics.

An individually structured curriculum will introduce students to interesting subjects such as materials, fluid mechanics, economics, and computer science. Students also investigate the design, construction, and operation of process units. Oral and written communications, teamwork, and management are also emphasized.

Aside from foundation courses-math, physics, and chemistry-and engineering sciences, students may select specialty study areas in process engineering, process control, biotechnology, electronic materials, environmental engineering, and petroleum engineering. Students’ backgrounds are developed with courses such as mathematics, reaction kinetics, thermodynamics, and transport phenomena.

Mission Statement

The mission of the Chemical and Biomolecular Engineering Department at the University of Houston is to educate students to become highly qualified chemical engineers, conduct innovative research in chemical engineering and related interdisciplinary areas, and provide service to the profession and to society.

The Department aspires to educate chemical engineering undergraduate students that:

  1. Can apply the fundamentals of chemical engineering to the synthesis and analysis of processes in both traditional Chemical Engineering industries as well as emerging disciplines (such as biotechnology, environmental engineering, electronic materials and ceramics).
  2. Have a firm grounding in chemistry, mathematics, and physics.
  3. Can effectively use computers to solve problems in chemical engineering and related interdisciplinary areas.
  4. Can design, perform, and analyze the results of experiments relevant to the analysis or synthesis of chemical processes.
  5. Can communicate effectively, orally or in writing, with technical and non-technical audiences.
  6. Understand the intertwining among chemical engineering, society, and the environment, and are aware of the ethical responsibilities of engineers.
  7. Appreciate the importance of lifelong learning and teamwork.

Civil And Environmental Engineering

Civil and environmental engineering is a people-oriented field focused on providing the basic needs of humanity.

Civil engineers improve society’s quality of life by enhancing the surroundings in which people live and by designing public works, transportation systems, buildings, and other infrastructure components.

Environmental engineers address problems such as hazardous waste management, drinking water treatment, municipal waste disposal, and other issues that affect the environment.

The jobs available in the field of civil and environmental engineering are diverse, so a broad base is provided to prepare graduates for a variety of positions. Students receive a broad-based education in the freshman and sophomore years and a more focused education in the junior and senior years. Further specialization after the senior year is offered through graduate education, where students focus on specific aspects of civil or environmental engineering. Students can choose electives from several areas of concentration including structural, geotechnical, environmental, and hydrosystems engineering.

Our experienced undergraduate advisor counsels our diverse student body towards successful and timely completion of their undergraduate objectives. Students cannot enroll for classes until they have been advised each term.

The rapid advance of knowledge requires life-long learning and continued self-learning for all professionals. Thus, it is essential that a student learns not only the knowledge itself but also how knowledge is created, acquired, and put to use for the betterment of people’s lives. Students’ skills are developed through various engineering analysis and computation courses, as well as through courses in behavior and design of structural engineering materials, fluid mechanics, water quality, soil behavior, and others. Students apply their new-found skills in a capstone design course, which challenges students to think, conceive, and create while working as a team to address an engineering problem.

Mission Statement

The mission of the Department of Civil and Environmental Engineering is to educate its students to be productive engineers and responsible citizens in the changing environment of the 21st century. This mission is achieved by:

  • upholding traditions of high academic standards in the classroom and in non-classroom educational activities, and encouraging students with non- traditional and diverse ethnic backgrounds;
  • creating, discovering and disseminating new knowledge through research and scholarly activity; and
  • serving as a resource for the constituencies of the University of Houston and the profession of civil and environmental engineering.

The BSCE degree program is continually monitored and assessed to ensure that it meets the needs of our constituencies including our students, and the civil engineering profession as represented by the employers of our graduates and the Department’s Advisory Board Members.

Electrical And Computer Engineering

Electrical and computer engineering is the application of scientific principles to the solution of electrical problems. Electrical and computer engineers conceive, design, and develop electrical, electronic, and computer products and systems. They work in the fields of antennas and radio wave propagation, biomedical engineering, computer engineering, control and communications systems, electrical equipment design, integrated circuit fabrication, lasers and fiber optics, power systems, robotics and semiconductor devices. All of these must have a firm foundation in basic electrical engineering principles as well as particular expertise in the specialty.

Students prepare for the diverse field of electrical and computer engineering by taking courses such as circuits and linear systems, electronics, digital design, microprocessor systems, and electromagnetic theory. Students pursuing the Bachelor of Science in Electrical Engineering degree choose between the EE option and the Computer option. The EE option provides breadth and depth in the concentration areas of electromagnetics and solid state devices, power and controls, signals and communications, and electronics. Students choosing the computer option take advanced courses in data structures and algorithms, digital and computer system design, operating systems, and computer architecture. Both options culminate in a capstone design course in which students propose and complete a major design project as part of a team. The Bachelor of Science degree in Computer Engineering is aimed at those students who want a more specialized focus in the computer area. The Bachelor of Science in Electrical Engineering and the Bachelor of Science in Computer Engineering degrees are accredited by the Engineering Accreditation Commission of ABET, http://www.abet.org.

Mission Statement

At the undergraduate level, the mission of the Electrical and Computer Engineering Department is to insure that our students acquire the necessary knowledge, skills, and abilities to perform successfully in the modern world as engineers, and to instill in them an ability for life-long learning and a sense of professional responsibility that will enable them to continue their professional development throughout their careers.

To fulfill our mission, we have set the following specific goals for our Undergraduate Program.

  • To insure that each student acquires a solid knowledge-base in the fundamentals of mathematics and basic science, as well as the basic skills of critical thinking and problem solving.
  • To develop within each student in the Bachelor of Science in Electrical Engineering program a thorough knowledge of the electrical engineering discipline, including a broad knowledge of the main fields, and an in-depth knowledge in one or more of these fields, chosen by the student.
  • To develop within each student in the Bachelor of Science in Computer Engineering program a thorough knowledge of the computer engineering discipline, including a broad knowledge of the electrical and computer engineering fields, and an in-depth knowledge in the computer engineering field.
  • To maintain a state-of-the-art set of laboratories and insure that students receive a significant and positive laboratory experience as part of their curriculum.
  • To develop in each student the communication and team-working skills necessary to perform effectively as an engineer, and to impart to each student a sense of ethical and professional responsibility.
  • To have each student obtain the type of real-world design experience that is crucial to the education of an engineer, including an appreciation for technical as well as economic and contemporary social issues.
  • To give each student the ability to achieve life-long learning and a desire for professional development.
  • To improve retention rates, promote academic success, and allow students to get the most from their educational experience by giving all students access to beneficial mentoring and advising.
  • To instill students with an enthusiasm for electrical and computer engineering by offering exciting and interesting freshman engineering courses.
  • To allow all students the opportunity to participate in a beneficial cooperative educational experience with industry during their program, if they choose to do so.
  • To keep a sufficient percentage of the required courses in the program scheduled during the evening, so that part-time students can attend and complete the program.

Industrial Engineering

Industrial engineering is about productivity. It deals with people, their tools, and their work environment, and how to maximize output in an effective and safe manner. It is computer intensive.

Industrial engineers draw upon knowledge in mathematics, and physical and social sciences as they explore methods of better integrating employees, materials, and equipment in the work environment. They explore production from various perspectives: organizational structures, human factors, management methods, facility layout, manufacturing systems, expert systems, and artificial intelligence.

To prepare for the diverse opportunities in industrial engineering, students are instructed in four major areas of the industrial engineering curriculum: manufacturing systems, management systems, knowledge-based methodologies, and ergonomics. In the curriculum, students experience manufacturing processes, planning and control of costs, quality control, human factors, facility layout, management functions, and operations research. Students are also trained in basic engineering sciences, statistics, computer operations, materials science, and modern analytical tools such as digital simulation.

Mission Statement

Our educational mission is to prepare students for successful Industrial Engineering careers in industry, academe, or government. The IE education emphasizes the analysis, design, and operation of those industrial systems which produce and distribute goods and services. Graduates develop the analytical and organizational leadership skills necessary to coordinate material, machinery, and manpower utilization while addressing human factors and safety issues.

Mechanical Engineering

Mechanical engineers create machines, materials, and systems that satisfy a particular function. They deal with problems in areas such as energy conversion, design of mechanical components and systems, man and machine environments, and instrumentation and control of processes.

Mechanical engineering has applications in all phases of industry, including such challenging fields as aerospace, materials, petroleum design, and product reliability and safety. Mechanical engineers consider acoustics, fluid mechanics, design, thermodynamics, mechanics, materials and heat transfer in addressing problems.

The department’s curriculum provides students with the opportunity to learn how to think creatively and logically, and how to use new-found knowledge to address complex problems. A three-course design sequence challenges students with creative design problems. To solve these problems, students use skills learned from classes in mechanics of materials, experimental methods, engineering analysis, mechanical design, materials science, thermodynamics, fluid mechanics, heat transfer, and mechanics.

Mission Statement

The mission of the undergraduate program is to produce graduates with a balanced education in mechanical engineering who are able to pursue learning and practice effectively in their profession.

Objectives for the undergraduate program are for the student to accomplish the following:

  1. A knowledge of basic mathematics and the natural-, engineering- and systems-sciences, as well as the basic skills of learning and critical thinking.
  2. a desire for intellectual discovery and exploration of the unknown.
  3. an awareness of and interest in the breadth of human intellectual achievement and cultural experience, including the accomplishments of the engineering profession.
  4. an appreciation of the ethical, democratic, economic and other value systems, and the formation of such values.
  5. the ability to perform the integration of knowledge in the practice of engineering.

Other Departmental Information and Degree Information Links

Engineering (ENGI) Coordinator:
Frank J. “Fritz” Claydon

Engineering PROMES (EGRP) Coordinator:
Diana De La Rosa-Pohl

Links to Degree Information:

Minors